Introducing the Java (Cont.2)

1-2

Rules for Creating Statements

Use a semicolon to terminate statements.
Define multiple statements within braces.
Use braces for control statements.

‘:(P A .

1-3

Control Statements

Categorizing Basic Flow Control Types

Flow control can be categorized into four types:

Sequential \ lteration

Selection s Transfer

1-4

Control Statements

Using Flow Control in Java

Each simple statement terminates with a
semicolon (;).
Group statements by using the braces { }.

Each block executes as a single statement within
the flow of control structure.

{

boolean finished = true;
System.out.println("i = " + 1);

1+4+;

1-5

Creating Code Blocks

* Enclose all class declarations.
* Enclose all method declarations.
« Group other related code segments.

public class SayHello ({

public static void main(String[] args) 1]
System.out.println("Hello world");
}

Lo

You never need to destroy an object

Scoping: {1}
{

determines the visibility

int x = 12; and lifetirae of the names
[* only x available */ defined within that scope.
{

int q = 96; {

/* both x & q available */ Intx=12;
) P227722272222772727
/* only x available */ int x =96; /* illegal */
/* q “out of scope” */ }

1 }

1-6

You never need to destroy an object

Scoping: {1}

Scope of objects

-

vanishes at the end of the scope,

but the String object that s was pointing to is
still occupying memory.

arbage collect

String s = new String(''a string'');
} I end of scope */

1-7

Control Statements
* Three types of selection statements.

1. if Single-Selection Statement

if (studentGrade >= 60)
System.out.printin("Passed"”);

2.1if..else Double-Selection Statement

if (grade >= 60)
System.out.println("Passed”);

else : :
System.out.printin("Failed"”);

Can test multiple cases by placing i f...else statements inside other i f...else
statements to create nested if...else

if (studentGrade >= 90)
System.out.printin("A");
else if (studentGrade >= 80)
System.out.printin("B");
else if (studentGrade >= 70)
System.out.printin("C");
else if (studentGrade >= 60)
] System.out.printin("D");
else

e System.out.printin("F");

Control Statements
* Three types of selection statements. (Cont.1)

2.1if..else Double-Selection Statement (cCont.l1l)

Conditional operator (? :)—shorthand 1 f...else.
Ternary operator (takes three operands)
Operands and 7 : form a conditional expression

Example:

System.out.printin(_
studentGrade >= 60 ? "passed” : "Failed");

1-9

Control Statements
* Three types of selection statements. (Cont.1)

2. 1if..else Double-Selection Statement (cCont.2)

if (x> 5)
{
if Cy>5)
System.out.printin("x and y are > 5");
}
else
System.out.println("x is <= 5");

if (grade >= 60)
System.out.printin("pPassed");
else

{
System.out.println("Failed™);

System.out.println('vou must take this course again.");

}

1-10

Control Statements
Three types of selection statements. (Cont.1)

3. switch statement

switch (choice) {
- Case labels

must be
constants.

- Use break to
jump out of a
switch.

case 37:

System.out.println("Coffeez") ;

_break;

case 45:
System.ocut.println("Tea?") ;

* Itis break;
recommended
to a'\.Nays default:
prowde a System.out.println("?2?2") ;
default.)

There are situations where falling through can be useful.
To fall through, simply do not include a break.

1-11

Control Statements
* Three repetition statements (also called looping statements)

Repetition statement’s body may be a single statement or a block { }

— while statement
— for statement
— Thedo...while

1-12

Looping in Java

- There are three types of loops in Java:
- while
- do..while

- for

- All loops have four parts:
— Iteration condition
— Body
— Initialization
— Termination

1-13

Using the while Loop

while is the simplest loop statement and contains
the following general form:

while (boolean_expr')

statement;

Example: il T
\ while (i < 10) {
/l \ System.out.println("i = * 4 1i);
H 3 14+
}

1-14

do..while loops place the test at the end:

Example:

Using the do..while Loop

do
statement;
while (termination):
int 16= 9O
do {

System.out.println("i
1++;

} while (i < 10);

+ 1)

Using the for Loop

for loops are the most common loops:

for (initialization; termination; iteration)
statement;
Example:
for (1 = 0; 1 < 10; i++)

System.out.println(i);

How would this for loop look using awhile loop?

1-16

More About the for Loop

- Variables can be declared in the initialization part
of a for loop:

for (int 1 = 0: 1IN 10 9O+y)

System.out.println("i = " + i);

- Initialization and iteration can consist of a list of
comma-separated expressions:

for (int i =0, § M0;\ D2 G d+4, J--) {
System.out.println("i = " + 1i);

System.out.println("j = + J3);

Guided Practice: Spot the Mistakes

int x = 10;

while (x > 0);

System.out.println(x--);

System.out.println("We have liftwoff!“);

int x = 10; 2
while (x > 0)

System.out.println("x is " + Xx);

X--;

int sum = 0;
for (; 1 < 10; sum += i++);

System.out.println("Sum is " + sum);

1-18

Form of the infinite loop ISs:

for(;;)

while(true)

1-19

break and continue

You can also control the flow of the loop Iinside

the body of any of the iteration statements by
using break and continue.

Break quits the loop without executing the rest of
the statements in the loop.

Continue stops the execution of the current
iteration and goes back to the beginning of the
loop to begin the next iteration.

1-20

package exh;

import java.util.*;

public class BM {
public static void main(String[] args) {

inta=1;

for(inti=0; i < 128; i++){

if (1==120)
break;

if (i==100|1==101)
continue;

if (Character.isLowerCase((char)i))

System.out.printin(*'value: " + i + " character: " + (chan)i);

}

System.out.printin(*

} o}

1-21

: 97 character: a
: 98 character: b
: 99 character: c
: 102 character:
: 103 character:
: 104 character:
: 105 character:
: 106 character:
: 107 character:
: 108 character:
: 109 character:
: 110 character:
: 111 character:
: 112 character:
: 113 character:
: 114 character:
: 115 character:
: 116 character:
: 117 character:
: 118 character:
: 119 character:

oG —

S <c~"vw-QQT O >3 — x"—

break and continue label

labell:

outer-iteration { the break breaks
inner-iteration { out of the inner
il iteration and you

break; /1 i
re < end up in the outer
continue; /Il 2 iteration.

/...
continue labell: [/ 3
/...
break labell: /Il 4

1-22

break and continue label

labell: _
outer-iteration { the continue moves
inner-iteration { back to the
L beginning of the

break; 1 _ _)
/... % Inner iteration.
continue; /l

/...
continue labell: [/ 3
/...
break labell: /Il 4

1-23

break and continue label

labell: :
SiEErETE | the continue labell
inner-iteration { breaks out of the inner
/... iteration and the outer
break; /1 iteration, all the way back
/... to labell. Then it does In
continue; "2 fact continue the

/...

continue labell: //
/...

break labell: /Il 4

iteration, but starting at
the outer iteration.

1-24

break and continue label

label 1:
outer-iteration {
Inner-iteration {

/...
SieEl 1 the break labell also
/... breaks all the way out to
continue: /] 2 labell, but it does not
/... reenter the iteration. It
continue labell; /'3 actually does break out
I... of both iterations.
break labell: /Il 4

}

1-25

public class BM {
public static void main(String[] args) {
inti=0;
outer: // Can't have statements here
for(; true ;) { // infinite loop

inner: // Can't have statements here

for(; i < 10; i++) {
System.out.printin("i =" +1);

if(i == 2) {System.out.printin("continue"); continue;}

if(i == 3) {System.out.printIn("break");
i++; // Otherwise i never gets incremented.
break; }

if(i == 7) {System.out.printIn("continue outer");
i++; // Otherwise i never gets incremented.
continue outer; }

if(i == 8) {System.out.printIn("break outer"); break outer;}
for(int k =0; k <5; k++) {

if(k == 3) {System.out.printIn(“continue inner");
continue inner;} }

L N
1-26

=0

continue inner
=1

continue inner
| =2

continue

=3

break

=4

continue inner
| =5

continue inner
|'=6

continue inner
=7

continue outer
| =8

break outer

Implementing the break Statement

- Breaks out of a loop or switch statement

- Transfers control to the first statement after the
loop body or switch statement

» Can simplify code but should be used éparingly

while (age <= 65) {

balance = (balance+payment) * (1 + interest);
if (balance >= 250000)

break;
age++;

-

Comparing Labeled break
and continue Statements

Can be used to break out of nested loops or continue
a loop outside the current loop:

outer loop:
for (int i = 0; i < 10; i++) {
for (iak § = 0; j% 5 j++) {
System.out.println (i) ;
System.out.println(j) ;
if (i + 3 8 %)

break puter loop:;

Compound Assignment Operators

Assignment operator Sample expression Explanation

Assume: int ¢ = 3, d =5, e=4, f=6, g=12;

+= C += 7 C=0C +.7 10to ¢
o d -= 4 d=d - 4 lrod
. e *= § eiiser x5 20to e
/= f/=3 f=F/13 2to f
Y= g %= 9 g=9%9 3tog

Fig. 4.13 | Arithmetic compound assignment operators.

1-29

Increment and Decrement Operators

Operator Sample

name expression Explanation

++ prefix ++a Increment a by 1, then use the new value of a in
increment the expression in which a resides.

++ postfix a++ Use the current value of a in the expression in
increment which a resides, then increment a by 1.

== prefix ==h Decrement b by 1, then use the new value of b in
decrement the expression in which b resides.

== postfix b-- Use the current value of b in the expression in
decrement ‘which b resides, then decrement b by 1.

Fig. 4.14 | Increment and decrement operators.

1-30

1-31

Logical Operators

Java’s logical operators enable you to form more
complex conditions by combining simple conditions.

The logical operators are
&& (conditional AND)
| (conditional OR)
& (boolean logical AND)
(boolean logical inclusive OR)
A (boolean logical exclusive OR)
I (logical NOT).
[NMote. The &, | and A operators are also bitwise
operators when they are applied to integral
operands.]

Operators Associativity

++ - right to left unary postfix

++ -= 4+ right to left unary prefix

* /% left to right multiplicative

+ - left to right additive

< <= > left to right relational

== = left to right equality

& left to right boolean logical AND

A left to right boolean logical exclusive OR
| left to right boolean logical inclusive OR
&& left to right conditional AND

|| left to right conditional OR

- right to left conditional

= 4= -= *= [= %= right to left assignment

Fig. 5.19 | Precedence/associativity of the operators discussed so far.

1-32

UML activity diagrams to summarize
Java’s control statements.

1-33

Sequence | Selection

N
-r) [t 14 —)_) brm)

if statement switch statement with breaks
(single selection) (multiple selection)

-

in
if..else statement
(double selection) Y

U Q!

Fig. 5.20 | Java's single-entry/single-exit sequence, selection and repetition
statements. (Part | of 2.)

Repetition

while statement do...while statement for statement

initialization

t
[t]) .

—)é increment ’

Fig. 5.20 | Java's single-entry/single-exit sequence, selection and repetition
statements. (Part 2 of 2.)

1-35

I

action state

Fig. 5.22 | Simplest activity diagram.

1-36

apply apply apply
rule 2 rule 2 rule 2
7/ 7 7
4 ? rd
7 & 7
7 7 7
rd 7/ 7/
' 4 7/
action state action state. action state action state

action state action state

¢

-action state

action state

Fig. 5.23 | Repeatedly applying the stacking rule (rule 2) of Fig. 5.21 to the
simplest activity diagram.

1-37

apply '
ryle 3

(") it
o~
)pdy . CIOEETPELA O] " . m
ll}k) N b ST g o [ulc 3

1

It 1)\(ﬂ 4 Il *!!‘

“&\f¢ +vw

Fig. 5.24 | Repeatedly applying the nesting rule (rule 3) of Fig. 5.21 to the
N simplest activity diagram.

Fig. 5.25 | “Unstructured” activity diagram.

1-39

